195 research outputs found

    A Duality-Based Approach for Distributed Optimization with Coupling Constraints

    Full text link
    In this paper we consider a distributed optimization scenario in which a set of agents has to solve a convex optimization problem with separable cost function, local constraint sets and a coupling inequality constraint. We propose a novel distributed algorithm based on a relaxation of the primal problem and an elegant exploration of duality theory. Despite its complex derivation based on several duality steps, the distributed algorithm has a very simple and intuitive structure. That is, each node solves a local version of the original problem relaxation, and updates suitable dual variables. We prove the algorithm correctness and show its effectiveness via numerical computations

    A randomized primal distributed algorithm for partitioned and big-data non-convex optimization

    Full text link
    In this paper we consider a distributed optimization scenario in which the aggregate objective function to minimize is partitioned, big-data and possibly non-convex. Specifically, we focus on a set-up in which the dimension of the decision variable depends on the network size as well as the number of local functions, but each local function handled by a node depends only on a (small) portion of the entire optimization variable. This problem set-up has been shown to appear in many interesting network application scenarios. As main paper contribution, we develop a simple, primal distributed algorithm to solve the optimization problem, based on a randomized descent approach, which works under asynchronous gossip communication. We prove that the proposed asynchronous algorithm is a proper, ad-hoc version of a coordinate descent method and thus converges to a stationary point. To show the effectiveness of the proposed algorithm, we also present numerical simulations on a non-convex quadratic program, which confirm the theoretical results

    Minimum-time trajectory generation for quadrotors in constrained environments

    Full text link
    In this paper, we present a novel strategy to compute minimum-time trajectories for quadrotors in constrained environments. In particular, we consider the motion in a given flying region with obstacles and take into account the physical limitations of the vehicle. Instead of approaching the optimization problem in its standard time-parameterized formulation, the proposed strategy is based on an appealing re-formulation. Transverse coordinates, expressing the distance from a frame path, are used to parameterise the vehicle position and a spatial parameter is used as independent variable. This re-formulation allows us to (i) obtain a fixed horizon problem and (ii) easily formulate (fairly complex) position constraints. The effectiveness of the proposed strategy is proven by numerical computations on two different illustrative scenarios. Moreover, the optimal trajectory generated in the second scenario is experimentally executed with a real nano-quadrotor in order to show its feasibility.Comment: arXiv admin note: text overlap with arXiv:1702.0427

    Controllability and observability of grid graphs via reduction and symmetries

    Full text link
    In this paper we investigate the controllability and observability properties of a family of linear dynamical systems, whose structure is induced by the Laplacian of a grid graph. This analysis is motivated by several applications in network control and estimation, quantum computation and discretization of partial differential equations. Specifically, we characterize the structure of the grid eigenvectors by means of suitable decompositions of the graph. For each eigenvalue, based on its multiplicity and on suitable symmetries of the corresponding eigenvectors, we provide necessary and sufficient conditions to characterize all and only the nodes from which the induced dynamical system is controllable (observable). We discuss the proposed criteria and show, through suitable examples, how such criteria reduce the complexity of the controllability (respectively observability) analysis of the grid

    On the reachability and observability of path and cycle graphs

    Full text link
    In this paper we investigate the reachability and observability properties of a network system, running a Laplacian based average consensus algorithm, when the communication graph is a path or a cycle. More in detail, we provide necessary and sufficient conditions, based on simple algebraic rules from number theory, to characterize all and only the nodes from which the network system is reachable (respectively observable). Interesting immediate corollaries of our results are: (i) a path graph is reachable (observable) from any single node if and only if the number of nodes of the graph is a power of two, n=2i,i∈♮n=2^i, i\in \natural, and (ii) a cycle is reachable (observable) from any pair of nodes if and only if nn is a prime number. For any set of control (observation) nodes, we provide a closed form expression for the (unreachable) unobservable eigenvalues and for the eigenvectors of the (unreachable) unobservable subsystem

    A duality-based approach for distributed min-max optimization with application to demand side management

    Full text link
    In this paper we consider a distributed optimization scenario in which a set of processors aims at minimizing the maximum of a collection of "separable convex functions" subject to local constraints. This set-up is motivated by peak-demand minimization problems in smart grids. Here, the goal is to minimize the peak value over a finite horizon with: (i) the demand at each time instant being the sum of contributions from different devices, and (ii) the local states at different time instants being coupled through local dynamics. The min-max structure and the double coupling (through the devices and over the time horizon) makes this problem challenging in a distributed set-up (e.g., well-known distributed dual decomposition approaches cannot be applied). We propose a distributed algorithm based on the combination of duality methods and properties from min-max optimization. Specifically, we derive a series of equivalent problems by introducing ad-hoc slack variables and by going back and forth from primal and dual formulations. On the resulting problem we apply a dual subgradient method, which turns out to be a distributed algorithm. We prove the correctness of the proposed algorithm and show its effectiveness via numerical computations.Comment: arXiv admin note: substantial text overlap with arXiv:1611.0916
    • …
    corecore